Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Front Immunol ; 15: 1375654, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38698841

RESUMEN

Background: Inflammatory bowel disease (IBD) is often associated with complex extraintestinal manifestations. The incidence of nonalcoholic fatty liver disease (NAFLD) in IBD populations is increasing yearly. However, the mechanism of interaction between NAFLD and IBD is not clear. Consequently, this study aimed to explore the common genetic characteristics of IBD and NAFLD and identify potential therapeutic targets. Materials and methods: Gene chip datasets for IBD and NAFLD were obtained from the Gene Expression Omnibus (GEO) database. Weighted gene co-expression network analysis (WGCNA) was performed to identify modules in those datasets related to IBD and NAFLD. ClueGO was used for biological analysis of the shared genes between IBD and NAFLD. Based on the Human MicroRNA Disease Database (HMDD), microRNAs (miRNAs) common to NAFLD and IBD were obtained. Potential target genes for the miRNAs were predicted using the miRTarbase, miRDB, and TargetScan databases. Two-sample Mendelian randomization (MR) and two-way MR were used to explore the causal relationship between Interleukin-17 (IL-17) and the risk of IBD and NAFLD using data from GWAS retrieved from an open database. Results: Through WGCNA, gene modules of interest were identified. GO enrichment analysis using ClueGO suggested that the abnormal secretion of chemokines may be a common pathophysiological feature of IBD and NAFLD, and that the IL-17-related pathway may be a common key pathway for the pathological changes that occur in IBD and NAFLD. The core differentially expressed genes (DEGs) in IBD and NAFLD were identified and included COL1A1, LUM, CCL22, CCL2, THBS2, COL1A2, MMP9, and CXCL8. Another cohort was used for validation. Finally, analysis of the miRNAs identified potential therapeutic targets. The MR results suggested that although there was no causal relationship between IBD and NAFLD, there were causal relationships between IL-17 and IBD and NAFLD. Conclusion: We established a comorbid model to explain the potential mechanism of IBD with NAFLD and identified the chemokine-related pathway mediated by cytokine IL-17 as the core pathway in IBD with NAFLD, in which miRNA also plays a role and thus provides potential therapeutic targets.


Asunto(s)
Enfermedades Inflamatorias del Intestino , Análisis de la Aleatorización Mendeliana , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/complicaciones , Enfermedad del Hígado Graso no Alcohólico/genética , Enfermedad del Hígado Graso no Alcohólico/complicaciones , Redes Reguladoras de Genes , MicroARNs/genética , Interleucina-17/genética , Interleucina-17/metabolismo , Predisposición Genética a la Enfermedad , Estudio de Asociación del Genoma Completo , Perfilación de la Expresión Génica , Polimorfismo de Nucleótido Simple
2.
Accid Anal Prev ; 202: 107572, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38657314

RESUMEN

Autonomous Vehicles (AVs) have the potential to revolutionize transportation systems by enhancing traffic safety. Safety testing is undoubtedly a critical step for enabling large-scale deployment of AVs. High-risk scenarios are particularly important as they pose significant challenges and provide valuable insights into the driving capabilities of AVs. This study presents a novel approach to assess the safety of AVs using in-depth crash data, with a particular focus on real-world crash scenarios. First, based on the high-definition video recording of the whole process prior to the crash occurrences, 453 real-world crashes involving 596 passenger cars from China In-depth Mobility Safety Study-Traffic Accident (CIMSS-TA) database were reconstructed. Pertinent static and dynamic elements needed for the construction of the testing scenarios were extracted. Subsequently, 596 testing scenarios were created via each passenger car's perspective within the simulation platform. Following this, each of the crash-involved passenger cars was replaced with Baidu Apollo, a famous automated driving system (ADS), for counterfactual simulation. Lastly, the safety performance of the AV was assessed using the simulation results. A logit model was utilized to identify the fifteen crucial scenario elements that have significant impacts on the test results. The findings demonstrated that the AV could avoid 363 real-world crashes, accounting for approximately 60.91% of the total, and effectively mitigated injuries in the remaining 233 unavoidable scenarios compared to a human driver. Moreover, the AV maintain a smoother speed in most of the scenarios. The common feature of these unavoidable scenarios is that the AV is in a passive state, and the crashes are not caused by the AV violating traffic rules, but rather caused by abnormal behavior exhibited by the human drivers. Additionally, seven specific scenarios have been identified wherein AVs are unable to avoid a crash. These findings demonstrate that, compared to human drivers, AVs can avoid crashes that are difficult for humans to avoid, thereby enhancing traffic safety.


Asunto(s)
Accidentes de Tránsito , Conducción de Automóvil , Automóviles , Seguridad , Accidentes de Tránsito/prevención & control , Accidentes de Tránsito/estadística & datos numéricos , Humanos , Conducción de Automóvil/estadística & datos numéricos , China , Automatización , Simulación por Computador , Grabación en Video , Modelos Logísticos , Bases de Datos Factuales
3.
Environ Res ; 252(Pt 2): 118935, 2024 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-38621630

RESUMEN

Hematite nanoparticles commonly undergoes isomorphic substitution of Al3+ in nature, while how the Al-substitution-induced morphological change, defective structure and newly generated Al-OH sites affect the adsorption behavior of hematite for contaminants remains poorly understood. Herein, the interfacial reactions between Al-substituted hematite and Pb2+ was investigated via CD-MUSIC modeling and DFT calculations. As the Al content increased from 0% to 9.4%, Al-substitution promoted the proportion of (001) facets and caused Fe vacancies on hematite, which increased the total active site density of hematite from 5.60 to 17.60 sites/nm2. The surface positive charge of hematite significantly increased from 0.096 to 0.418 C/m2 at pH 5.0 due to the increases in site density and proton affinity (logKH) of hematite under Al-substitution. The adsorption amount of hematite for Pb2+ increased from 3.92 to 9.74 mmol/kg at pH 5.0 and 20 µmol/L initial Pb2+ concentration with increasing Al content. More Fe vacancies may lead to a weaker adsorption energy (Ead) of hematite for Pb2+, while the Ead was enhanced at higher Al content. The adsorption affinity (logKPb) of bidentate Pb complexes slightly increased while that of tridentate Pb complexes decreased with increasing Al content due to the presence of ≡ AlOH-0.5 and ≡ Fe2AlO-0.5 sites. Tridentate Pb complexes were dominant species on the surface of pure hematite, while bidentate ones became more dominant with increasing Al content. The obtained model parameters and molecular scale information are of great importance for better describing and predicting the environmental fate of toxic heavy metals in terrestrial and aquatic environments.

4.
J Nephrol ; 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38512376

RESUMEN

Vascular calcification is a common complication in patients with chronic kidney disease (CKD) and is strongly associated with an increased risk of cardiovascular events and all-cause mortality. Calciphylaxis is a specific and life-threatening manifestation of vascular calcifications that usually affects individuals with advanced kidney function impairment or those undergoing dialysis. Currently, the treatment of vascular calcification and calciphylaxis in CKD lacks approved treatments and focuses on controlling risk factors. SNF472, the intravenous formulation of myo-inositol hexaphosphate, is a novel vascular calcification inhibitor currently undergoing phase 3 clinical trials, demonstrating its ability to directly inhibit the formation of calcium and phosphorus crystals, thereby blocking the production and deposition of ectopic calcium. The efficacy and safety of SNF472 in inhibiting vascular calcification have been confirmed in recent clinical studies. This review summarizes the results of studies related to SNF472 to provide a comprehensive overview of its mechanism of action, efficacy, safety, and ongoing clinical studies.

5.
Bone Joint Res ; 13(3): 124-126, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38461860
6.
Phys Rev Lett ; 132(4): 040404, 2024 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-38335337

RESUMEN

We consider the preparation of matrix product states (MPS) on quantum devices via quantum circuits of local gates. We first prove that faithfully preparing translation-invariant normal MPS of N sites requires a circuit depth T=Ω(logN). We then introduce an algorithm based on the renormalization-group transformation to prepare normal MPS with an error ε in depth T=O[log(N/ε)], which is optimal. We also show that measurement and feedback leads to an exponential speedup of the algorithm to T=O[loglog(N/ε)]. Measurements also allow one to prepare arbitrary translation-invariant MPS, including long-range non-normal ones, in the same depth. Finally, the algorithm naturally extends to inhomogeneous MPS.

7.
Invest Ophthalmol Vis Sci ; 65(1): 13, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38175639

RESUMEN

Purpose: The purpose of this study was to identify key genes and their regulatory networks that are conserved in mouse models of age-related macular degeneration (AMD) and human AMD. Methods: Retinal RNA-Seq was performed in laser-induced choroidal neovascularization (CNV) mice at day 3 and day 7 after photocoagulation. Mass spectrometry-based proteomic analysis was performed with retinas collected at day 3. Retinal RNA-Seq data was further compared among mouse models of laser-induced CNV and NaIO3-induced retinal degeneration (RD) and a large AMD cohort. Results: Retinal RNA-Seq revealed upregulated genes and pathways related to innate immunity and inflammation in mice with CNV, with more profound changes at the early stage (day 3). Proteomic analysis further validated these differentially expressed genes and their networks in retinal inflammation during CNV. Notably, the most evident overlap in the retina of mice with laser-induced CNV and NaIO3-induced RD was the upregulation of inflammation-related genes, pointing to a common vital role of retinal inflammation in the early stage for both mouse AMD models. Further comparative transcriptomic analysis of the mouse AMD models and human AMD identified 48 conserved genes mainly involved in inflammation response. Among them, B2M, C3, and SERPING1 were upregulated in all stages of human AMD and the mouse AMD models compared to controls. Conclusions: Our study demonstrates conserved molecular changes related to retinal inflammation in mouse AMD models and human AMD and provides new insight into the translational application of these mouse models in studying AMD mechanisms and treatments.


Asunto(s)
Neovascularización Coroidal , Degeneración Macular , Degeneración Retiniana , Humanos , Animales , Ratones , Proteómica , Degeneración Macular/genética , Retina , Inflamación , Neovascularización Coroidal/genética , Modelos Animales de Enfermedad
8.
Biochem Biophys Res Commun ; 695: 149373, 2024 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-38176170

RESUMEN

Recent studies have revealed that tumor immunotherapy resistance is influenced by ADAR-mediated RNA editing, but its targets remain unelucidated. Our current study identified the poliovirus receptor (PVR) oncogene, which encodes an immune checkpoint in colorectal cancer (CRC), as a potential target for RNA editing. We performed transcriptome sequencing analysis and experimental validation in two Chinese CRC cohorts. PVR and ADAR expressions significantly increased in CRC tumors and showed positive correlations in both cohorts, coupled with upregulated PVR RNA editing in CRC tumors. Manipulation of ADAR expression by over-expression or knockdown substantially changed PVR expression and RNA editing in HTC116 CRC cells. Luciferase reporter and actinomycin D assays further revealed that RNA editing in PVR 3'-UTR could upregulate PVR RNA expression, probably by increasing the RNA stability. By increasing PVR expression, ADAR-mediate RNA editing might contribute to tumor- and immune-related gene functions and pathways in CRC. Moreover, a signature combining PVR RNA editing and expression showed promising predictive performance in CRC diagnosis in both Chinese CRC cohorts. Our findings thus highlight the importance of ADAR-mediated RNA editing in PVR up-regulation in CRC tumors and provide new insight into the application of PVR RNA editing as a novel diagnostic biomarker for CRC.


Asunto(s)
Neoplasias Colorrectales , Proteínas de Unión al ARN , Receptores Virales , Humanos , Adenosina Desaminasa/genética , Adenosina Desaminasa/metabolismo , Neoplasias Colorrectales/genética , Perfilación de la Expresión Génica , Edición de ARN/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Proteínas de Punto de Control Inmunitario/genética , Proteínas de Punto de Control Inmunitario/metabolismo
9.
Commun Biol ; 7(1): 10, 2024 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-38172644

RESUMEN

Retinoid-related orphan receptor gamma t (RORγt) is the lineage-specific transcription factor for T helper 17 (Th17) cells. Our previous study demonstrated that STAT3 likely participates in the activation of RORCE2 (a novel enhancer of the RORγt gene) in Th17 cells. However, the detailed mechanism is still unclear. Here, we demonstrate that both STAT3 and SOX-5 mediate the enhancer activity of RORCE2 in vitro. Deletion of the STAT3 binding site (STAT3-BS) in RORCE2 impaired RORγt expression and Th17 differentiation, resulting in reduced severity of experimental autoimmune encephalomyelitis (EAE). Mechanistically, STAT3 and SOX-5 bind the RORCE2 region and recruit the chromatin remodeling factor BRG1 to remodel the nucleosomes positioned at this region. Collectively, our data suggest that STAT3 and SOX-5 mediate the differentiation of Th17 cells through the induction of BRG1-mediated chromatin remodeling of RORCE2 in Th17 cells.


Asunto(s)
Encefalomielitis Autoinmune Experimental , Células Th17 , Animales , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/genética , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Ensamble y Desensamble de Cromatina , Diferenciación Celular/genética
10.
Artículo en Inglés | MEDLINE | ID: mdl-37878409

RESUMEN

Perovskite layer defects are a primary inhibiting factor for their optical nonlinearity, which restricts their use in nonlinear photonics devices. Nevertheless, due to the variety of defect types, the passivation and repair of these defects remain challenging. Herein, a novel bifunctional passivation strategy was proposed, and the porphyrin with a donor-π-acceptor structure was designed to bifunctionally repair perovskite defects by linking different types of functional groups via acetylenic π-conjugated linkage bridges on both sides, thus improving the nonlinear optical (NLO) absorption properties of porphyrin-perovskite hybrid materials. Research results indicate that the amino and carboxyl groups of porphyrins endow the ability to bifunctionally passivate charged defects via effective coordination interactions. The nonlinear absorption properties of all porphyrin-passivated MAPbI3 films were remarkably enhanced compared to that of the MAPbI3 film across multiple wavelengths and temporal domains. Particularly, the Por3-passivated perovskite film (MAPbI3/Por3) exhibited optimized strongest NLO performance, including reverse saturable absorption (RSA) under 800 nm femtosecond (fs) and 1064 nm nanosecond (ns) laser irradiations, as well as saturable absorption (SA) with 515 and 532 nm ns laser excitations. The value of the NLO absorption coefficient (ß = 266.23 cm GW-1) is 1 order of magnitude higher than that of the pristine perovskite film (ß = 12.93 cm GW-1), also outperforming other porphyrin-passivated perovskite films and some reported materials. The bifunctional passivation mechanism of porphyrin not only intensifies the perovskite's photoinduced ground-state dipole moment in the two-photon absorption (TPA) process and the free carrier absorption ability to deepen the RSA properties under 800 nm fs and 1064 nm ns lasers, respectively, but also enables the improvement of SA responses under 515 nm fs and 532 nm ns lasers by expediting the Pauli blocking effect of perovskite. Our study offers a viable paradigm, which aims at exploiting high-performance NLO perovskite materials across wide spectral regions and time scales.

11.
Mech Ageing Dev ; 216: 111877, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37820882

RESUMEN

Deteriorated age-related bone loss is the hallmarks of skeletal aging. However, how the aging of bone marrow mesenchymal stem cells (BMSCs) and osteoclasts are linked to the bone microstructure degeneration is not yet very clear. In this study, the characteristics of age-related bone loss, distribution patterns of osteoclasts, functional and transcriptomic alterations of BMSCs, hub genes responsible for BMSCs senescence, were analyzed. Our study revealed an age-related declined trends in trabecular and cortical bones of femur, tibia and lumbar vertebra in mice, which was accompanied by a shift from the trabecular to cortical bones in osteoclasts. Additionally, middle-aged or aged mice exhibited remarkably reduced dynamic bone formation capacities, along with reversed osteogenic-adipogenic differentiation potentials in BMSCs. Finally, transcriptomic analysis indicated that aging-related signaling pathways were significantly activated in BMSCs from aged mice (e.g., cellular senescence, p53 signaling pathway, etc.). Also, weighted correlation network analysis (WGCNA) and venn diagram analysis based on our RNA-Seq data and GSE35956 dataset revealed the critical role of PTPN1 in BMSCs senescence. Targeted inhibition of PTP1B with AAV-Ptpn1-RNAi dramatically postponed age-related bone loss in middle-aged mice. Collectively, our study has uncovered the age-dependent cellular characteristics in BMSCs and osteoclasts underlying progressive bone loss with advancing age.


Asunto(s)
Células Madre Mesenquimatosas , Osteoporosis , Ratones , Animales , Osteoclastos , Huesos , Diferenciación Celular , Células Madre Mesenquimatosas/metabolismo , Perfilación de la Expresión Génica , Osteoporosis/metabolismo , Células Cultivadas
12.
Plants (Basel) ; 12(17)2023 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-37687344

RESUMEN

MicroRNA (miRNA) plays a crucial role in the interactions between plants and pathogens, and identifying disease-related miRNAs could help us understand the mechanisms underlying plant disease pathogenesis and breed resistant varieties. However, the role of miRNA in wheat defense responses remains largely unexplored. The miR397 family is highly conserved in plants and involved in plant development and defense response. Therefore, the purpose of this study was to investigate the function of tae-miR397 in wheat resistance to powdery mildew. The expression pattern analysis revealed that tae-miR397 expression was higher in young leaves than in other tissues and was significantly decreased in wheat Bainong207 leaves after Blumeria graminis (Bgt) infection and chitin treatment. Additionally, the expression of tae-miR397 was significantly down-regulated by salicylic acid and induced under jasmonate treatment. The overexpression of tae-miR397 in common wheat Bainong207 enhanced the wheat's susceptibility to powdery mildew in the seedling and adult stages. The rate of Bgt spore germination and mycelial growth in transgenic wheat plants overexpressing tae-miR397 was faster than in the untransformed wild-type plants. The target gene of tae-miR397 was predicted to be a wound-induced protein (Tae-WIP), and the function was investigated. We demonstrated that silencing of Tae-WIP via barley-stripe-mosaic-virus-induced gene silencing enhanced wheat's susceptibility to powdery mildew. qRT-PCR indicated that tae-miR397 regulated wheat immunity by controlling pathogenesis-related gene expressions. Moreover, the transgenic plants overexpressing tae-miR397 exhibited more tillers than the wild-type plants. This work suggests that tae-miR397 is a negative regulator of resistance against powdery mildew and has great potential for breeding disease-resistant cultivars.

13.
J Orthop Translat ; 42: 82-93, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37705762

RESUMEN

Background: The periosteum stem cells (PSCs) plays a critical role in bone regeneration and defect reconstruction. Insertion of polymethyl methacrylate (PMMA) bone cement can form an induced membrane(IM) and showed promising strategy for bone defect reconstruction, the underlying mechanism remains unclear. Our study sought to determine whether IM-derived cells(IMDCs) versus PSCs have similar characteristics in bone regeneration. Methods: IM and periosteum were harvested from ten bone defect patients treated with PMMA, the IMDCs and PSCs were isolated respectively. Morphological, functional and molecular evaluation was performed and matched for comparison. Results: Both progenitor-like IMDCs and PSCs were successfully isolated. In vitro, we found IMDCs were similar to PSCs in morphology, colony forming capacity and expression of surface marker(CD90+, CD73+, CD105+, CD34-/CD45-). Meanwhile, these IMSCs displayed multipotency with chondrogenic, adipogenic and osteogenic differentiation, but differed in some IMSCs(3/10) population showing relatively poor osteogenic differentiation. The molecular profiles suggests that cell cycle and DNA replication signaling pathways were associated with these varying osteogenic potential. In vivo, we established a cell-based tissue-engineered bone by seeding IMDSs/PSCs to demineralized bone matrix (DBM) scaffold and demonstrated both IMDSs and PSCs enhanced bone regeneration in SCID mice bone defect model compared with DBM alone. Conclusion: Our data demonstrated IM containing multipotent progenitor cells similar to that periosteum promoting bone regeneration, and indicated the existence of multiple subsets in osteogenic differentiation. Overall, the study provided a cellular and molecular insights in understanding the successful or failed outcome of bone defect healing.The translational potential of this article: This study confirmed IMDCs and PSCs share similar regeneration capacity and inform a translation potential of that cellular therapy applying IMDCs in bone defect repair.

14.
Bone Joint Res ; 12(9): 546-558, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37697974

RESUMEN

Aims: This study aimed to evaluate the effectiveness of the induced membrane technique for treating infected bone defects, and to explore the factors that might affect patient outcomes. Methods: A comprehensive search was performed in PubMed, Embase, and the Cochrane Central Register of Controlled Trials databases between 1 January 2000 and 31 October 2021. Studies with a minimum sample size of five patients with infected bone defects treated with the induced membrane technique were included. Factors associated with nonunion, infection recurrence, and additional procedures were identified using logistic regression analysis on individual patient data. Results: After the screening, 44 studies were included with 1,079 patients and 1,083 segments of infected bone defects treated with the induced membrane technique. The mean defect size was 6.8 cm (0.5 to 30). After the index second stage procedure, 85% (797/942) of segments achieved union, and 92% (999/1,083) of segments achieved final healing. The multivariate analysis with data from 296 patients suggested that older age was associated with higher nonunion risk. Patients with external fixation in the second stage had a significantly higher risk of developing nonunion, increasing the need for additional procedures. The autografts harvested from the femur reamer-irrigator-aspirator increased nonunion, infection recurrence, and additional procedure rates. Conclusion: The induced membrane technique is an effective technique for treating infected bone defects. Internal fixation during the second stage might effectively promote bone healing and reduce additional procedures without increasing infection recurrence. Future studies should standardize individual patient data prospectively to facilitate research on the affected patient outcomes.

15.
Front Oncol ; 13: 1143688, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37711207

RESUMEN

Objectives: In adult diffuse glioma, preoperative detection of isocitrate dehydrogenase (IDH) status helps clinicians develop surgical strategies and evaluate patient prognosis. Here, we aim to identify an optimal machine-learning model for prediction of IDH genotyping by combining deep-learning (DL) signatures and conventional radiomics (CR) features as model predictors. Methods: In this study, a total of 486 patients with adult diffuse gliomas were retrospectively collected from our medical center (n=268) and the public database (TCGA, n=218). All included patients were randomly divided into the training and validation sets by using nested 10-fold cross-validation. A total of 6,736 CR features were extracted from four MRI modalities in each patient, namely T1WI, T1CE, T2WI, and FLAIR. The LASSO algorithm was performed for CR feature selection. In each MRI modality, we applied a CNN+LSTM-based neural network to extract DL features and integrate these features into a DL signature after the fully connected layer with sigmoid activation. Eight classic machine-learning models were analyzed and compared in terms of their prediction performance and stability in IDH genotyping by combining the LASSO-selected CR features and integrated DL signatures as model predictors. In the validation sets, the prediction performance was evaluated by using accuracy and the area under the curve (AUC) of the receiver operating characteristics, while the model stability was analyzed by using the relative standard deviation of the AUC (RSDAUC). Subgroup analyses of DL signatures and CR features were also individually conducted to explore their independent prediction values. Results: Logistic regression (LR) achieved favorable prediction performance (AUC: 0.920 ± 0.043, accuracy: 0.843 ± 0.044), whereas support vector machine with the linear kernel (l-SVM) displayed low prediction performance (AUC: 0.812 ± 0.052, accuracy: 0.821 ± 0.050). With regard to stability, LR also showed high robustness against data perturbation (RSDAUC: 4.7%). Subgroup analyses showed that DL signatures outperformed CR features (DL, AUC: 0.915 ± 0.054, accuracy: 0.835 ± 0.061, RSDAUC: 5.9%; CR, AUC: 0.830 ± 0.066, accuracy: 0.771 ± 0.051, RSDAUC: 8.0%), while DL and DL+CR achieved similar prediction results. Conclusion: In IDH genotyping, LR is a promising machine-learning classification model. Compared with CR features, DL signatures exhibit markedly superior prediction values and discriminative capability.

16.
J Ocul Pharmacol Ther ; 39(9): 643-652, 2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37582278

RESUMEN

Purpose: To investigate the efficacy and safety of scleral cross-linking (CXL) using Genipin in the treatment of juvenile guinea pigs with high myopia. Methods: Twenty-four 4-week-old tricolor guinea pigs with high myopia of diopter ≤ -6.0 DS in the right eye were randomly divided into two groups: Genipin CXL group and control group (n = 12 for each group). They received separately form-deprivation (FD) combined with sub-tenon injection, and the former was 0.5% Genipin solution, while the latter was 0.9% saline solution. Refractive error, axial length (AL), intraocular pressure (IOP), and structural and vasculature optic disc changes in optical coherence tomography (OCT) and OCT angiography (OCTA) were analyzed at baseline and at 3 weeks after injection. Results: Baseline parameters were similar between the two groups (P > 0.05). After 3 weeks of the intervention, the difference of AL between the two groups was statistically significant (t = -11.28, P < 0.001). Besides, IOP increased in both groups, and the changes of IOP between the two groups were statistically significant (t = 2.80, P = 0.01). The average cup-disc ratio (C/D) (t = 3.11, P = 0.006) and the vertical C/D (t = 2.96, P = 0.009) of OCT-related optic disc parameters in the Genipin CXL group increased, and the differences were statistically significant compared with the control group. Conclusion: The CXL method of sub-tenon injection of Genipin solution could effectively inhibit the progression of myopia in juvenile guinea pigs with highly myopic eyes combined with FD. The slightly elevated IOP and increased C/D of some fundus optic discs should be further assessed.


Asunto(s)
Miopía , Cobayas , Animales , Miopía/tratamiento farmacológico , Esclerótica , Iridoides/farmacología , Iridoides/uso terapéutico , Presión Intraocular
17.
Phys Rev Lett ; 131(2): 026701, 2023 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-37505968

RESUMEN

In kagome metal CsV_{3}Sb_{5}, multiple intertwined orders are accompanied by both electronic and structural instabilities. These exotic orders have attracted much recent attention, but their origins remain elusive. The newly discovered CsTi_{3}Bi_{5} is a Ti-based kagome metal to parallel CsV_{3}Sb_{5}. Here, we report angle-resolved photoemission experiments and first-principles calculations on pristine and Cs-doped CsTi_{3}Bi_{5} samples. Our results reveal that the van Hove singularity (vHS) in CsTi_{3}Bi_{5} can be tuned in a large energy range without structural instability, different from that in CsV_{3}Sb_{5}. As such, CsTi_{3}Bi_{5} provides a complementary platform to disentangle and investigate the electronic instability with a tunable vHS in kagome metals.

18.
Front Neurosci ; 17: 1220114, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37449273

RESUMEN

Myopia is one of the most common causes of vision loss globally and is significantly affected by epigenetics. Adenosine-to-inosine (A-to-I RNA) editing is an epigenetic process involved in neurological disorders, yet its role in myopia remains undetermined. We performed a transcriptome-wide analysis of A-to-I RNA editing in the retina of form-deprivation myopia mice. Our study identified 91 A-to-I RNA editing sites in 84 genes associated with myopia. Notably, at least 27 (32.1%) of these genes with myopia-associated RNA editing showed existing evidence to be associated with myopia or related ocular phenotypes in humans or animal models, such as very low-density lipoprotein receptor (Vldlr) in retinal neovascularization and hypoxia-induced factor 1 alpha (Hif1a). Moreover, functional enrichment showed that RNA editing enriched in FDM was primarily involved in response to fungicides, a potentially druggable process for myopia prevention, and epigenetic regulation. In contrast, RNA editing enriched in controls was mostly involved in post-embryonic eye morphogenesis. Our results demonstrate altered A-to-I RNA editing associated with myopia in an experimental mouse model and warrant further study on its role in myopia development.

19.
Nat Commun ; 14(1): 3819, 2023 Jun 28.
Artículo en Inglés | MEDLINE | ID: mdl-37369675

RESUMEN

Van Hove singularity (VHS) has been considered as a driving source for unconventional superconductivity. A VHS in two-dimensional (2D) materials consists of a saddle point connecting electron-like and hole-like bands. In a rare case, when a VHS appears at Fermi level, both electron-like and hole-like conduction can coexist, giving rise to an enhanced density of states as well as an attractive component of Coulomb interaction for unconventional electronic pairing. However, this van Hove scenario is often destroyed by an incorrect chemical potential or competing instabilities. Here, by using angle-resolved photoemission measurements, we report the observation of a VHS perfectly aligned with the Fermi level in a kagome superconductor CsV3-xTaxSb5 (x ~ 0.4), in which a record-high superconducting transition temperature is achieved among all the current variants of AV3Sb5 (A = Cs, Rb, K) at ambient pressure. Doping dependent measurements reveal the important role of van Hove scenario in boosting superconductivity, and spectroscopic-imaging scanning tunneling microscopy measurements indicate a distinct superconducting state in this system.

20.
Sci Rep ; 13(1): 7990, 2023 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-37198265

RESUMEN

This study was designed to evaluate the impact of methicillin resistance on the outcomes among patients with S. aureus osteomyelitis. We reviewed all extremity osteomyelitis patients treated in our clinic center between 2013 and 2020. All adult patients with S. aureus pathogen infection were included. Clinical outcome in terms of infection control, length of hospital stay, and complications were observed at the end of a 24-month follow-up and retrospectively analyzed between populations with/without methicillin resistance. In total, 482 osteomyelitis patients due to S. aureus were enrolled. The proportion of methicillin-resistant S. aureus (MRSA) was 17% (82) and 83% (400) of patients had Methicillin-sensitive S. aureus (MSSA). Of 482 patients, 13.7% (66) presented with infection persistence after initial debridement and antibiotic treatment (6 weeks), needed repeated debridement, 8.5% (41) had recurrence after all treatment end and a period infection cure, complications were observed in 17 (3.5%) patients (pathologic fracture; 4, nonunion; 5, amputation; 8) at final follow-up. Following multivariate analysis, we found patients with S. aureus osteomyelitis due to MRSA are more likely to develop a persistent infection (OR: 2.26; 95% CI 1.24-4.13) compared to patients with MSSA. Patients infected with MRSA also suffered more complications (8.5% vs. 2.5%, p = 0.015) and longer hospital stays (median: 32 vs. 23 days, p < 0.001). No statistically significant differences were found in recurrence. The data indicated Methicillin resistance had adverse clinical implication for infection persistence among patients with S. aureus osteomyelitis. These results will help for patients counsel and preparation for treatment.


Asunto(s)
Staphylococcus aureus Resistente a Meticilina , Osteomielitis , Infecciones Estafilocócicas , Adulto , Humanos , Staphylococcus aureus , Resistencia a la Meticilina , Estudios Retrospectivos , Infecciones Estafilocócicas/tratamiento farmacológico , Antibacterianos/uso terapéutico , Antibacterianos/farmacología , Osteomielitis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...